即A的行是B的列,A的列是B的行。
【例】下图中的B和上图中的A互为转置矩阵。
①三元组表表示的矩阵转置的思想方法
第一步:根据A矩阵的行数、列数和非零元总数确定B矩阵的列数、行数和非零元总数。
第二步:当三元组表非空(A矩阵的非零元不为0)时,根据A矩阵三元组表的结点空间data(以下简称为三元组表),将A的三
元组表a->data置换为B的三元组表b->data。
②三元组表的转置
方法一:简单地交换a->data中i和j中的内容,得到按列优先顺序存储倒b->data;再将b->data重排成按行优先顺序的三元组表。
方法二:由于A的列是B的行,因此,按a->data的列序转置,所得到的转置矩阵B的三元组表b->data必定是按行优先存放的。
按这种方法设计的算法,其基本思想是:对A中的每一列col(0≤col≤a->n-1),通过从头至尾扫描三元组表a->data,找出所有
列号等于col的那些三元组,将它们的行号和列号互换后依次放人b->data中,即可得到B的按行优先的压缩存贮表示。具体实现参见
【 动画演示 】
③具体算法:
void TransMatrix(TriTupleTable *b,TriTupleTable *a)
{//*a,*b是矩阵A、B的三元组表表示,求A转置为B
int p,q,col;
b->m=a->n; b->n=a->m; //A和B的行列总数互换
b->t=a->t; //非零元总数
if(b->t<=0)
Error("A=0"); //A中无非零元,退出
q=0;
for(col=0;coln;col++) //对A的每一列
for(p=0;pt;p++) //扫描A的三元组表
if(a->data[p].j==col){ //找列号为col的三元组
b->data[q).i=a->data[p].j;
b->data[q].j=a->data[p].i;
b->data[q].v=a->data[p].v;
q++;
}
} //TransMatrix
④算法分析
该算法的时间主要耗费在col和p的二重循环上:
若A的列数为n,非零元素个数t,则执行时间为O(n×t),即与A的列数和非零元素个数的乘积成正比。
通常用二维数组表示矩阵时,其转置算法的执行时间是O(m×n),它正比于行数和列数的乘积。
由于非零元素个数一般远远大于行数,因此上述稀疏矩阵转置算法的时间大于通常的转置算法的时间。