java

位置:IT落伍者 >> java >> 浏览文章

Java的垃圾回收之算法


发布日期:2023年08月25日
 
Java的垃圾回收之算法

引言

Java的堆是一个运行时数据区类的实例(对象)从中分配空间Java虚拟机(JVM)的堆中储存着正在运行的应用程序所建立的所有对象这些对象通过newnewarrayanewarray和multianewarray等指令建立但是它们不需要程序代码来显式地释放一般来说堆的是由垃圾回收来负责的尽管JVM规范并不要求特殊的垃圾回收技术甚至根本就不需要垃圾回收但是由于内存的有限性JVM在实现的时候都有一个由垃圾回收所管理的堆垃圾回收是一种动态存储管理技术它自动地释放不再被程序引用的对象按照特定的垃圾收集算法来实现资源自动回收的功能

垃圾收集的意义

在C++中对象所占的内存在程序结束运行之前一直被占用在明确释放之前不能分配给其它对象而在Java中当没有对象引用指向原先分配给某个对象的内存时该内存便成为垃圾JVM的一个系统级线程会自动释放该内存块垃圾收集意味着程序不再需要的对象是无用信息这些信息将被丢弃当一个对象不再被引用的时候内存回收它占领的空间以便空间被后来的新对象使用事实上除了释放没用的对象垃圾收集也可以清除内存记录碎片由于创建对象和垃圾收集器释放丢弃对象所占的内存空间内存会出现碎片碎片是分配给对象的内存块之间的空闲内存洞碎片整理将所占用的堆内存移到堆的一端JVM将整理出的内存分配给新的对象

垃圾收集能自动释放内存空间减轻编程的负担这使Java 虚拟机具有一些优点首先它能使编程效率提高在没有垃圾收集机制的时候可能要花许多时间来解决一个难懂的存储器问题在用Java语言编程的时候靠垃圾收集机制可大大缩短时间其次是它保护程序的完整性 垃圾收集是Java语言安全性策略的一个重要部份

垃圾收集的一个潜在的缺点是它的开销影响程序性能Java虚拟机必须追蹤运行程序中有用的对象而且最终释放没用的对象这一个过程需要花费处理器的时间其次垃圾收集算法的不完备性早先采用的某些垃圾收集算法就不能保证%收集到所有的废弃内存当然随着垃圾收集算法的不断改进以及软硬件运行效率的不断提升这些问题都可以迎刃而解

垃圾收集的算法分析

Java语言规范没有明确地说明JVM使用哪种垃圾回收算法但是任何一种垃圾收集算法一般要做件基本的事情)发现无用信息对象)回收被无用对象占用的内存空间使该空间可被程序再次使用

大多数垃圾回收算法使用了根集(root set)这个概念所谓根集就量正在执行的Java程序可以访问的引用变量的集合(包括局部变量参数类变量)程序可以使用引用变量访问对象的属性和调用对象的方法垃圾收集首选需要确定从根开始哪些是可达的和哪些是不可达的从根集可达的对象都是活动对象它们不能作为垃圾被回收这也包括从根集间接可达的对象而根集通过任意路径不可达的对象符合垃圾收集的条件应该被回收下面介绍几个常用的算法

引用计数法(Reference Counting Collector)

引用计数法是唯一没有使用根集的垃圾回收的法该算法使用引用计数器来区分存活对象和不再使用的对象一般来说堆中的每个对象对应一个引用计数器当每一次创建一个对象并赋给一个变量时引用计数器置为当对象被赋给任意变量时引用计数器每次加当对象出了作用域后(该对象丢弃不再使用)引用计数器减一旦引用计数器为对象就满足了垃圾收集的条件

基于引用计数器的垃圾收集器运行较快不会长时间中断程序执行适宜地必须 实时运行的程序但引用计数器增加了程序执行的开销因为每次对象赋给新的变量计数器加而每次现有对象出了作用域生计数器减

tracing算法(Tracing Collector)

tracing算法是为了解决引用计数法的问题而提出它使用了根集的概念基于tracing算法的垃圾收集器从根集开始扫描识别出哪些对象可达哪些对象不可达并用某种方式标记可达对象例如对每个可达对象设置一个或多个位在扫描识别过程中基于tracing算法的垃圾收集也称为标记和清除(markandsweep)垃圾收集器

compacting算法(Compacting Collector)

为了解决堆碎片问题基于tracing的垃圾回收吸收了Compacting算法的思想在清除的过程中算法将所有的对象移到堆的一端堆的另一端就变成了一个相邻的空闲内存区收集器会对它移动的所有对象的所有引用进行更新使得这些引用在新的位置能识别原来的对象在基于Compacting算法的收集器的实现中一般增加句柄和句柄表

copying算法(Coping Collector)

该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收它开始时把堆分成 一个对象 面和多个空闲面程序从对象面为对象分配空间当对象满了基于coping算法的垃圾 收集就从根集中扫描活动对象并将每个活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞)这样空闲面变成了对象面原来的对象面变成了空闲面程序会在新的对象面中分配内存

一种典型的基于coping算法的垃圾回收是stopandcopy算法它将堆分成对象面和空闲区域面在对象面与空闲区域面的切换过程中程序暂停执行

generation算法(Generational Collector)

stopandcopy垃圾收集器的一个缺陷是收集器必须复制所有的活动对象这增加了程序等待时间这是coping算法低效的原因在程序设计中有这样的规律多数对象存在的时间比较短少数的存在时间比较长因此generation算法将堆分成两个或多个每个子堆作为对象的一代 (generation)由于多数对象存在的时间比较短随着程序丢弃不使用的对象垃圾收集器将从最年轻的子堆中收集这些对象在分代式的垃圾收集器运行后上次运行存活下来的对象移到下一最高代的子堆中由于老一代的子堆不会经常被回收因而节省了时间

adaptive算法(Adaptive Collector)

在特定的情况下一些垃圾收集算法会优于其它算法基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况并将选择适当算法的垃圾收集器

透视Java垃圾回收

命令行参数透视垃圾收集器的运行

使用Systemgc()可以不管JVM使用的是哪一种垃圾回收的算法都可以请求Java的垃圾回收在命令行中有一个参数verbosegc可以查看Java使用的堆内存的情况它的格式如下

java verbosegc classfile

可以看个例子

class TestGC

{

public static void main(String[] args)

{

new TestGC();

Systemgc();

SystemrunFinalization();

}

}

在这个例子中一个新的对象被创建由于它没有使用所以该对象迅速地变为可达程序编译后执行命令 java verbosegc TestGC 后结果为

[Full GC K>K(K) secs]

机器的环境为Windows + JDK箭头前后的数据K和K分别表示垃圾收集GC前后所有存活对象使用的内存容量说明有KK=K的对象容量被回收括号内的数据K为堆内存的总容量收集所需要的时间是秒(这个时间在每次执行的时候会有所不同)

finalize方法透视垃圾收集器的运行

在JVM垃圾收集器收集一个对象之前 一般要求程序调用适当的方法释放资源但在没有明确释放资源的情况下Java提供了缺省机制来终止化该对象心释放资源这个方法就是finalize()它的原型为

protected void finalize() throws Throwable

在finalize()方法返回之后对象消失垃圾收集开始执行原型中的throws Throwable表示它可以抛出任何类型的异常

之所以要使用finalize()是由于有时需要采取与Java的普通方法不同的一种方法通过分配内存来做一些具有C风格的事情这主要可以通过固有方法来进行它是从Java里调用非Java方法的一种方式C和C++是目前唯一获得固有方法支持的语言但由于它们能调用通过其他语言编写的子程序所以能够有效地调用任何东西在非Java代码内部也许能调用C的malloc()系列函数用它分配存储空间而且除非调用了 free()否则存储空间不会得到释放从而造成内存漏洞的出现当然free()是一个C和C++函数所以我们需要在finalize()内部的一个固有方法中调用它也就是说我们不能过多地使用finalize()它并不是进行普通清除工作的理想场所

在普通的清除工作中为清除一个对象那个对象的用户必须在希望进行清除的地点调用一个清除方法这与C++破坏器的概念稍有抵触在C++中所有对象都会破坏(清除)或者换句话说所有对象都应该破坏若将C++对象创建成一个本地对象比如在堆栈中创建(在Java中是不可能的)那么清除或破坏工作就会在结束花括号所代表的创建这个对象的作用域的末尾进行若对象是用new创建的(类似于Java)那么当程序员调用C++的 delete命令时(Java没有这个命令)就会调用相应的破坏器若程序员忘记了那么永远不会调用破坏器我们最终得到的将是一个内存漏洞另外还包括对象的其他部分永远不会得到清除

相反Java不允许我们创建本地(局部)对象无论如何都要使用new但在Java中没有delete命令来释放对象因为垃圾收集器会帮助我们自动释放存储空间所以如果站在比较简化的立场我们可以说正是由于存在垃圾收集机制所以Java没有破坏器然而随着以后学习的深入就会知道垃圾收集器的存在并不能完全消除对破坏器的需要或者说不能消除对破坏器代表的那种机制的需要(而且绝对不能直接调用finalize()所以应尽量避免用它)若希望执行除释放存储空间之外的其他某种形式的清除工作仍然必须调用Java中的一个方法它等价于C++的破坏器只是没后者方便

下面这个例子向大家展示了垃圾收集所经历的过程并对前面的陈述进行了总结

class Chair {

static boolean gcrun = false;

static boolean f = false;

static int created = ;

static int finalized = ;

int i;

Chair() {

i = ++created;

if(created == )

Systemoutprintln(Created );

}

protected void finalize() {

if(!gcrun) {

gcrun = true;

Systemoutprintln(Beginning to finalize after + created + Chairs have been created);

}

if(i == ) {

Systemoutprintln(Finalizing Chair # +Setting flag to stop Chair creation);

f = true;

}

finalized++;

if(finalized >= created)

Systemoutprintln(All + finalized + finalized);

}

}

public class Garbage {

public static void main(String[] args) {

if(argslength == ) {

Systemerrprintln(Usage: \n + java Garbage before\n or:\n + java Garbage after);

return;

}

while(!Chairf) {

new Chair();

new String(To take up space);

}

Systemoutprintln(After all Chairs have been created:\n + total created = + Chaircreated +

total finalized = + Chairfinalized);

if(args[]equals(before)) {

Systemoutprintln(gc():);

Systemgc();

Systemoutprintln(runFinalization():);

SystemrunFinalization();

}

Systemoutprintln(bye!);

if(args[]equals(after))

SystemrunFinalizersOnExit(true);

}

}

上面这个程序创建了许多Chair对象而且在垃圾收集器开始运行后的某些时候程序会停止创建Chair由于垃圾收集器可能在任何时间运行所以我们不能准确知道它在何时启动因此程序用一个名为gcrun的标记来指出垃圾收集器是否已经开始运行利用第二个标记fChair可告诉 main()它应停止对象的生成这两个标记都是在finalize()内部设置的它调用于垃圾收集期间另两个static变量created以及finalized分别用于跟蹤已创建的对象数量以及垃圾收集器已进行完收尾工作的对象数量最后每个Chair都有它自己的(非 static)int i所以能跟蹤了解它具体的编号是多少编号为的Chair进行完收尾工作后标记会设为true最终结束Chair对象的创建过程

关于垃圾收集的几点补充

经过上述的说明可以发现垃圾回收有以下的几个特点

)垃圾收集发生的不可预知性由于实现了不同的垃圾收集算法和采用了不同的收集机制所以它有可能是定时发生有可能是当出现系统空闲CPU资源时发生也有可能是和原始的垃圾收集一样等到内存消耗出现极限时发生这与垃圾收集器的选择和具体的设置都有关系

)垃圾收集的精确性主要包括 个方面(a)垃圾收集器能够精确标记活着的对象(b)垃圾收集器能够精确地定位对象之间的引用关系前者是完全地回收所有废弃对象的前提否则就可能造成内存洩漏而后者则是实现归并和复制等算法的必要条件所有不可达对象都能够可靠地得到回收所有对象都能够重新分配允许对象的复制和对象内存的缩并这样就有效地防止内存的支离破碎

)现在有许多种不同的垃圾收集器每种有其算法且其表现各异既有当垃圾收集开始时就停止应用程序的运行又有当垃圾收集开始时也允许应用程序的线程运行还有在同一时间垃圾收集多线程运行

)垃圾收集的实现和具体的JVM 以及JVM的内存模型有非常紧密的关系不同的JVM 可能采用不同的垃圾收集而JVM 的内存模型决定着该JVM可以采用哪些类型垃圾收集现在HotSpot 系列JVM中的内存系统都采用先进的面向对象的框架设计这使得该系列JVM都可以采用最先进的垃圾收集

)随着技术的发展现代垃圾收集技术提供许多可选的垃圾收集器而且在配置每种收集器的时候又可以设置不同的参数这就使得根据不同的应用环境获得最优的应用性能成为可能

针对以上特点我们在使用的时候要注意

)不要试图去假定垃圾收集发生的时间这一切都是未知的比如方法中的一个临时对象在方法调用完毕后就变成了无用对象这个时候它的内存就可以被释放

)Java中提供了一些和垃圾收集打交道的类而且提供了一种强行执行垃圾收集的方法调用Systemgc()但这同样是个不确定的方法Java 中并不保证每次调用该方法就一定能够启动垃圾收集它只不过会向JVM发出这样一个申请到底是否真正执行垃圾收集一切都是个未知数

)挑选适合自己的垃圾收集器一般来说如果系统没有特殊和苛刻的性能要求可以采用JVM的缺省选项否则可以考虑使用有针对性的垃圾收集器比如增量收集器就比较适合实时性要求较高的系统之中系统具有较高的配置有比较多的闲置资源可以考虑使用并行标记/清除收集器

)关键的也是难把握的问题是内存洩漏良好的编程习惯和严谨的编程态度永远是最重要的不要让自己的一个小错误导致内存出现大漏洞

)尽早释放无用对象的引用大多数程序员在使用临时变量的时候都是让引用变量在退出活动域(scope)后自动设置为null暗示垃圾收集器来收集该对象还必须注意该引用的对象是否被监听如果有则要去掉监听器然后再赋空值

结束语

一般来说Java开发人员可以不重视JVM中堆内存的分配和垃圾处理收集但是充分理解Java的这一特性可以让我们更有效地利用资源同时要注意finalize()方法是Java的缺省机制有时为确保对象资源的明确释放可以编写自己的finalize方法

转自:

               

上一篇:JAVA 动态代理

下一篇:Java计时器Timer 使用